Effect of Skew on Support Length Demands of Bridges with Seat-Type Abutments

Suiwen Wu and Ian G. Buckle

Department of Civil and Environmental Engineering University of Nevada, Reno, United States of America

Third International Bridge Seismic Workshop, University of Washington, Seattle,October 1-4, 2019

Outline

- Background (seismic damage to skew bridges)
- Skew factors in current specifications and manuals
- Shake table experiment
- Experimental validation of a numerical model
- Parameter study
- Comparison of skew factors
- Summary and Conclusions
- Recommendations
- Acknowledgements

Background: seismic damage to skew bridges

I-5 Overpass at Gavin Canyon (66^o) 1994 Northridge Earthquake, CA

Hospital Overpass 2010 Maule Earthquake, Chile

Skew factors in current specifications and design manuals

where:

- $f(\theta)$ = skew factor, which is the ratio of additional support length due to skew to support length of straight bridges
- N_0 = minimum support length for straight bridges (in)
- N_{θ} = minimum support length for skew bridges (in)
- θ = skew angle (°), which is measured from the line perpendicular to the longitudinal axis to the centerline of the support

corne

corner

Skew factors in current specifications and design manuals

FHWA Retrofit Manual (Buckle et al. 2006) & Caltrans SDC 2.0

$$f(\theta) = \frac{1 - \cos\theta}{\cos\theta}$$

Note that these skew factors are based on engineering judgment.

Shake table experiments - bridge models

Cases	θ (⁰)	B (ft)	L (ft)	L (in)	L1(in)	L ₂ (in)	L/B	h(in)	W (kips)
Case 1	0	3.5	10.50	126	126	0.00	3.00	2.0	3.3
Case 2	30	3.5	12.50	150	126	24	3.57	2.0	4.1
Case 3	45	3.5	14.00	168	126	42	4.00	2.0	4.6
Case 4	60	3.5	16.50	198	126	72	4.71	2.0	5.3

Model scale = 3.5/40 ≈ 1/10

Shake table experiments - instrumentation

Transducers used to measure:

- displacements
- accelerations and
- impact forces between bridge deck and abutments

Plan view of instrumentation for 45⁰ model (other models similar)

Schematic of skew bridge model on shake table

Shake table experiments - test matrix

Skew, θ	0 ⁰ , 30 ⁰ , 45 ⁰ , 60 ⁰
Abutment gap	0", 1/16", 1/8", 3/16", 1/4" (0 to 3" in prototype bridges)
EQ record	El Centro (1940), Century City (1994), Sylmar (1994)
EQ levels	50%DE, 75%DE,100%DE, 150%DE, 200%DE,
EQ input direction	Transverse only, Longitudinal only, Biaxial
Total runs	876

Shake table experiments (plan view)

θ=60[°], gap=1/8 in, SYL1994, biaxial input, 200%DE **10**

Shake table experiments (side views)

Acute corner east abutment

Acute corner west abutment

 θ =60°, gap=1/8 in, SYL1994, biaxial input, 200%DE

Shake table experiments (face beams)

Abrasion marks on face beams from the 60^o model (other models similar) Complete dataset of this experiment is stored in:

• Wu, S., Buckle, I.G., Itani, A.M., and Istrati, D. (2019). "Experimental datasets from large-scale shake table experiments on skew bridges." <u>https://doi.org/10.17605/OSF.IO/2Q3DP</u>.

- Shell elements with distributed mass were used to model the bridge deck
- Elastomeric bearings were represented by linear springs based on the properties estimated from quick-release tests which are corresponding to 50% shear strain of the bearings
- "BeamContact3D" elements were used to model the gap, impact, and friction effects between deck and abutments.
 Friction coefficient = 0.3 for steel-on-steel.
- Damping assumed to be same in first translational and first rotational modes, and based on the quick-release tests (50% shear strain of the bearings).

- dt=1/256 sec
- Results were converged when time step reduced to dt/10
- Dt/10 was used for the analysis.

Maximum response quantities vs time step dt

Run 125, 45^o model: Gap=1/8 in, 200%DE, El Centro, biaxial input:

Normal displacements at acute corners

Maximum normal displacement (numerical vs experimental results) for 60^o model (all EQs and all gaps,225 tests) Max. N

Parameter study - basic bridge geometry

Prototype bridge: single-span, seat-type abuts, T= 0.85s, Δ_{temp} = 1.05 in

Parameter study – analysis cases

For each configuration, skew varied from 0^o to 60^o in steps of 5^o

					Group	1 (Constant B=	40 ft)			
Case #	L (ft)	B (ft)	L/B	d (ft)	Gap (in)	N ₀ from AASHTO (in)	Total weight (kips)	K (kip/in /bearing)	# of bearings	T (s)
1	100	40	2.5	4.5	0.5	15	913	10.76	12	0.85
2	120	40	3	4.75	0.5	15.6	1122	13.23	12	0.85
3	140	40	3.5	6.3	0.75	16.2	1505	17.73	12	0.85
4	160	40	4	7.2	0.75	16.8	1849	21.79	12	0.85
5	180	40	4.5	8.1	1	17.4	2226	26.23	12	0.85
6	200 +	_40_	5	9	1	18	2636	31.06	12	0.85
Group 2 (Constant L=120 ft)										
					Group	2 (Constant L=1	20 ft)			
Case #	L (ft)	B (ft)	L/B	d (ft)	Group Gap	2 (Constant L=1 N ₀ from	20 ft) Total weight	K (kip/in	# of	Т (s)
Case #	L (ft)	B (ft)	L/B	d (ft)	Group Gap (in)	2 (Constant L=1 N ₀ from AASHTO (in)	20 ft) Total weight (kips)	K (kip/in /bearing)	# of bearings	T (s)
Case #	L (ft) 120	B (ft) 48 ●	L/B 2.5	d (ft) 4.75	Group Gap (in) 0.5	2 (Constant L=1 N ₀ from AASHTO (in) 15.6	20 ft) Total weight (kips) 1350	K (kip/in /bearing) 14	# of bearings 14	T (s)
Case # 7 8	L (ft) 120 120	B (ft) 48 ▲ 40	L/B 2.5 3	d (ft) 4.75 4.75	Group Gap (in) 0.5 0.5	2 (Constant L=1 N ₀ from AASHTO (in) 15.6 15.6	20 ft) Total weight (kips) 1350 1122	K (kip/in /bearing) 14 13	# of bearings 14 12	T (s) 0.85 0.85
Case # 7 8 9	L (ft) 120 120 120	B (ft) 48 40 34	L/B 2.5 3 3.5	d (ft) 4.75 4.75 4.75	Group Gap (in) 0.5 0.5 0.5	2 (Constant L=1 N ₀ from AASHTO (in) 15.6 15.6 15.6	20 ft) Total weight (kips) 1350 1122 936	K (kip/in /bearing) 14 13 13	# of bearings 14 12 10	T (s) 0.85 0.85 0.85 0.85
Case # 7 8 9 10	L (ft) 120 120 120 120 120	B (ft) 48 40 34 30	L/B 2.5 3 3.5 4	d (ft) 4.75 4.75 4.75 4.75 4.75	Group Gap (in) 0.5 0.5 0.5 0.5	2 (Constant L=1 N ₀ from AASHTO (in) 15.6 15.6 15.6 15.6	20 ft) Total weight (kips) 1350 1122 936 855	K (kip/in /bearing) 14 13 13 12	# of bearings 14 12 10 10	T (s) 0.85 0.85 0.85 0.85 0.85
Case # 7 8 9 10 11	L (ft) 120 120 120 120 120	B (ft) 48 40 34 30 27	L/B 2.5 3 3.5 4 4.5	d (ft) 4.75 4.75 4.75 4.75 4.75 4.75	Group Gap (in) 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 2 \text{ (Constant L=1} \\ N_0 \text{ from} \\ \text{AASHTO (in)} \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.6 \end{array}$	20 ft) Total weight (kips) 1350 1122 936 855 729	K (kip/in /bearing) 14 13 13 12 13	# of bearings 14 12 10 10 8	T (s) 0.85 0.85 0.85 0.85 0.85 0.85

Parameter study-OpenSEES model

- Rigid abutment assumed
- BeamContact3D element used to model impact and friction between bridge and abutment
- Coefficient of friction taken as 1.0 for concrete-on-concrete
- 5% damping in first translational and first rotational modes

Parameter study – ground motions

Far field ground motions

Average results from 7 ground motions used to draw conclusions

Chi-Chi, Taiwan

1999

TCU053

7

5.95

Parameter study $-f(\theta)$

For purpose of this study, take:

where n_{θ} and n_{0} are the calculated displacement demands normal to the abutments at the supports of skewed and straight bridges respectively, and a is allowance for the cover concrete at the edge of the seat.

a = 76.2 mm (3.0 in)(cover) + 25.4 mm (1.0 in)rebar diameter= 101.6 mm (4.0 in)

Then skew factor,
$$f(\theta) = \frac{N_{\theta} - N_0}{N_0} = \frac{n_{\theta} - n_0}{n_0 + 101.6}$$

Parameter study $-f(\theta) = \delta N/N_0$ (far-field GMs)

Parameter study $-f(\theta) = \delta N/N_0$ (Near-field GMs)

Comparison of skew factors

25

Summary and conclusions – analytical investigation

- The numerical models with and without abutment pounding, show good correlation with the experimental results and therefore can be used with confidence to investigate the seismic response of skew bridges
- The skew factor f(θ) for the minimum support length increases linearly with skew angle from 0° to 60° for both near-field and far-field ground motions.
- The skew factor for the minimum support length of skewed bridges is larger for near-field ground motions than that for far-field ground motions.
- The skew factor in AASHTO Specifications (0.000125θ²) is unconservative particularly for skew angles in the range 15 to 45 degrees.

Recommendations

- $f(\theta) = 0.0074\theta$ (far-field bridges)
- $f(\theta) = 0.0082\theta$ (near-field bridges)

Acknowledgements

- Financial support provided by:
 - Federal Highway Administration under Contract No. DTFH61-07-C-0031 with technical oversight provided by FHWA CORs:
 - Dr Wen-huei (Phillip) Yen
 - Mr Fred Faridazar, and
 - Ms Sheila Duwadi
- Technical assistance from Earthquake Engineering Lab provided by:
 - Patrick Laplace, Chad and Todd Lyttle

Thank you!

Any questions?